Copied to
clipboard

G = C32⋊C54order 486 = 2·35

The semidirect product of C32 and C54 acting via C54/C9=C6

metabelian, supersoluble, monomial

Aliases: C32⋊C54, C33.1C18, C3⋊S3⋊C27, (C3×C27)⋊1S3, C3.2(S3×C27), C32⋊C271C2, (C32×C9).1C6, C9.6(C32⋊C6), C32.13(S3×C9), C3.5(C32⋊C18), (C3×C3⋊S3).C9, (C9×C3⋊S3).C3, (C3×C9).48(C3×S3), SmallGroup(486,16)

Series: Derived Chief Lower central Upper central

C1C32 — C32⋊C54
C1C3C32C33C32×C9C32⋊C27 — C32⋊C54
C32 — C32⋊C54
C1C9

Generators and relations for C32⋊C54
 G = < a,b,c | a3=b3=c54=1, ab=ba, cac-1=a-1b-1, cbc-1=b-1 >

9C2
2C3
3C3
6C3
3S3
9C6
9S3
2C32
2C9
3C32
6C9
6C32
3C3×S3
9C18
9C3×S3
2C3×C9
3C3×C9
3C27
6C27
6C3×C9
3S3×C9
9S3×C9
9C54
2C3×C27
3S3×C27

Smallest permutation representation of C32⋊C54
On 54 points
Generators in S54
(2 20 38)(3 21 39)(5 41 23)(6 42 24)(8 26 44)(9 27 45)(11 47 29)(12 48 30)(14 32 50)(15 33 51)(17 53 35)(18 54 36)
(1 37 19)(2 20 38)(3 39 21)(4 22 40)(5 41 23)(6 24 42)(7 43 25)(8 26 44)(9 45 27)(10 28 46)(11 47 29)(12 30 48)(13 49 31)(14 32 50)(15 51 33)(16 34 52)(17 53 35)(18 36 54)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54)

G:=sub<Sym(54)| (2,20,38)(3,21,39)(5,41,23)(6,42,24)(8,26,44)(9,27,45)(11,47,29)(12,48,30)(14,32,50)(15,33,51)(17,53,35)(18,54,36), (1,37,19)(2,20,38)(3,39,21)(4,22,40)(5,41,23)(6,24,42)(7,43,25)(8,26,44)(9,45,27)(10,28,46)(11,47,29)(12,30,48)(13,49,31)(14,32,50)(15,51,33)(16,34,52)(17,53,35)(18,36,54), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)>;

G:=Group( (2,20,38)(3,21,39)(5,41,23)(6,42,24)(8,26,44)(9,27,45)(11,47,29)(12,48,30)(14,32,50)(15,33,51)(17,53,35)(18,54,36), (1,37,19)(2,20,38)(3,39,21)(4,22,40)(5,41,23)(6,24,42)(7,43,25)(8,26,44)(9,45,27)(10,28,46)(11,47,29)(12,30,48)(13,49,31)(14,32,50)(15,51,33)(16,34,52)(17,53,35)(18,36,54), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54) );

G=PermutationGroup([[(2,20,38),(3,21,39),(5,41,23),(6,42,24),(8,26,44),(9,27,45),(11,47,29),(12,48,30),(14,32,50),(15,33,51),(17,53,35),(18,54,36)], [(1,37,19),(2,20,38),(3,39,21),(4,22,40),(5,41,23),(6,24,42),(7,43,25),(8,26,44),(9,45,27),(10,28,46),(11,47,29),(12,30,48),(13,49,31),(14,32,50),(15,51,33),(16,34,52),(17,53,35),(18,36,54)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)]])

90 conjugacy classes

class 1  2 3A3B3C3D3E3F3G3H6A6B9A···9F9G···9L9M···9R18A···18F27A···27R27S···27AJ54A···54R
order1233333333669···99···99···918···1827···2727···2754···54
size1911222666991···12···26···69···93···36···69···9

90 irreducible representations

dim111111112222666
type++++
imageC1C2C3C6C9C18C27C54S3C3×S3S3×C9S3×C27C32⋊C6C32⋊C18C32⋊C54
kernelC32⋊C54C32⋊C27C9×C3⋊S3C32×C9C3×C3⋊S3C33C3⋊S3C32C3×C27C3×C9C32C3C9C3C1
# reps112266181812618126

Matrix representation of C32⋊C54 in GL6(𝔽109)

100000
90450000
5063000
000100
107000630
102000045
,
4500000
0450000
0045000
45006300
17000630
12000063
,
83000070
590038055
290003826
00660043
59000055
293800026

G:=sub<GL(6,GF(109))| [1,90,5,0,107,102,0,45,0,0,0,0,0,0,63,0,0,0,0,0,0,1,0,0,0,0,0,0,63,0,0,0,0,0,0,45],[45,0,0,45,17,12,0,45,0,0,0,0,0,0,45,0,0,0,0,0,0,63,0,0,0,0,0,0,63,0,0,0,0,0,0,63],[83,59,29,0,59,29,0,0,0,0,0,38,0,0,0,66,0,0,0,38,0,0,0,0,0,0,38,0,0,0,70,55,26,43,55,26] >;

C32⋊C54 in GAP, Magma, Sage, TeX

C_3^2\rtimes C_{54}
% in TeX

G:=Group("C3^2:C54");
// GroupNames label

G:=SmallGroup(486,16);
// by ID

G=gap.SmallGroup(486,16);
# by ID

G:=PCGroup([6,-2,-3,-3,-3,-3,-3,43,68,3244,3250,11669]);
// Polycyclic

G:=Group<a,b,c|a^3=b^3=c^54=1,a*b=b*a,c*a*c^-1=a^-1*b^-1,c*b*c^-1=b^-1>;
// generators/relations

Export

Subgroup lattice of C32⋊C54 in TeX

׿
×
𝔽